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Abstract 

Studies have shown a strong link between heart rate 
variability (HRV) and frailty. In this paper, frailty is 
assessed using HRV during physical activity. This study 
used a single-lead ECG collected from patients after open-
heart surgery during multiple physical activities. Frailty 
was assessed using the Edmonton Frail Scale (EFS), where 
scores equal to or lower than five were considered non-
frail, and scores greater than five were considered frail. 
QRS peaks during a 6-minute walk test were detected using 
the Pan-Tompkins algorithm, followed by the extraction of 
36 HRV features. Extracted features include statistical 
features (e.g., SDNN, pNN50), frequency features (e.g., 
low and high-frequency power), traditional Poincare 
features (e.g., SD1 and SD2), geometric Poincare features 
(e.g., local and global cooccurrence features), and heart 
rate asymmetry (e.g., Guzik and Porta index). Multiple 
classifiers were trained for frailty assessment, including a 
decision tree and a neural network, and the best model was 
selected via 5-fold cross-validation. ECGs for sixty-seven 
participants (29 non-frail and 38 frail) were analyzed. A 
CatBoost Classifier was the best-performing classifier, 
leading to an F1 score of 84.6% and an AUC of 0.82. 
Promising results suggest the potential of using HRV 
during physical activity and machine learning for frailty 
assessment.  

 
1. Introduction 

Frailty is a geriatric syndrome characterized by reduced 
physiological reserves and heightened vulnerability to 
stressors [1]. Among older adult patients undergoing major 
cardiac surgery, frailty is associated with delayed 
postoperative recovery and an elevated risk of adverse 
outcomes [2].  

Frailty is consistently linked with dysregulation of the 
autonomic nervous system (ANS) and impaired cardiac 
autonomic control [3]. This impairment is frequently 
observed through reduced heart rate variability (HRV) in 
individuals with higher levels of frailty [3-7]. Recent 
research suggests that frailty can be more accurately 

assessed by analyzing cardiovascular responses to physical 
activity, such as the upper-extremity function test [5, 8, 9]. 
Studies show that frail older adults often exhibit attenuated 
heart rate (HR) increases and slower peak HR responses 
during physical activity or orthostatic challenges, 
indicating a diminished capacity to physiologically adapt 
to stress [3, 8]. While resting HRV is a common measure 
of ANS function, studies suggest that HRV responses to 
controlled stressors, such as walking or upper-extremity 
tasks, may more effectively reveal subtle or undetectable 
dysregulations related to frailty at rest [3-5, 8]. A wearable 
ECG recording device provides an easy, practical solution 
for real-time cardiac signal recording and facilitates the 
quantification of autonomic responses during exercise. The 
PhysioNet dataset “Wearable-based signals during 
physical exercises from patients with frailty after open-
heart surgery” offers a valuable resource for research in 
this domain [10]. The main goal of this paper is to evaluate 
whether frailty can be accurately assessed using HRV 
features combined with machine learning.  
 
2. Data 

This study used a PhysioNet database entitled 
“Wearable-based signals during physical exercises from 
patients with frailty after open-heart surgery” [10, 11]. 
This data includes synchronized single-lead ECG and 
triaxial acceleration signals from 80 older adults enrolled 
in a cardiac rehabilitation program after open-heart 
surgery, recorded during a sequence of standardized tests 
for health status assessment (veloergometry, six-minute 
walk, stair climbing, timed up and go, and treadmill gait 
analysis). A single-lead ECG recording was acquired using 
a Polar H10 wearable chest strap sensor with a sampling 
rate of 130 Hz [10, 11]. Frailty for each subject was 
assessed using the Edmonton Frail Scale (EFS), in which 
scores of 5 or lower were considered non-frail and scores 
of 6 or higher were considered frail. The number of 
available signals in each exercise in this study is 
summarized in Table 1. Only the six-minute walk test 
(6MWT) was used in this study for Frailty assessment. 
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3. Feature Extraction 

QRS peaks were detected from the ECG signal during 
6MWT using the Pan-Tompkins algorithm [12], followed 
by the extraction of 36 HRV features. Extracted features 
are grouped into six categories: statistical features, 
frequency features, traditional Poincare features, 
geometric Poincare features, heart rate asymmetry, and 
heart rate fragmentation. 

3.1. Statistical Features 
 
With a finite number of intervals, consider RR intervals 

as RRi with i = 1, 2, …, N, where RRi denotes the value of 
the i’th RR interval and N is the total number of successive 
intervals. The mean value of RR intervals (RR_mean) is 
the most evident of linear indexes of HRV [6]. Counting 
how many times each RR interval appears, RR_mode is the 
one that appears the most. RR_median is the middle value 
in a set of RR intervals. RR_skew is a measure of the 
asymmetry of the probability distribution of RR intervals 
about its mean, and RR_kurt refers to the distribution of 
data around the mean. 
The standard deviation of RR intervals (SDRR) reflects the 
overall (both short-term and long-term) variation within 
the RR interval series, which is defined as: 

 (1) 

in which the mean RR interval is shown by
. The standard deviation of successive RR interval 
differences (SDSD) can be used as a measure of the short-
term variability.  

 (2) 

Another feature which is calculated from successive RR 
interval differences is the NN50, which is the number of 
successive intervals differing more than 50 ms: 

 (3) 

3.2. Frequency Features 

Very Low Frequency (VLF) power is a band of the 

power spectrum that ranges between 0.003 and 0.04 Hz, 
indicating overall activity of various slow mechanisms of 
sympathetic function. Low Frequency (LF) power is a 
band of the power spectrum that ranges from 0.04 to 0.15 
Hz and measures both sympathetic and parasympathetic 
activity. High Frequency (HF) power, ranging from 0.15 to 
0.4 Hz, reflects parasympathetic activity, and the LF/HF 
ratio indicates the overall balance between the sympathetic 
and parasympathetic systems [13]. 

3.3. Traditional Poincare Features 

Poincare plot is a 2D space in which the pair of points 
is defined as: (RRi, RRi+1), in which i = 1, 2, 3, …, N-1, 
where N is the number of RR intervals in the signal [14]. 
SD1 and SD2 are the standard descriptors of the Poincare 
plot that show the dispersion of points around the lines y = 
-x and y = x, respectively [15]. Tulppo et al. fitted an 
ellipse to the distribution of points in the Poincare plot [15] 
where Cn is the area of this estimated ellipse [16]. CCM is 
a descriptor introduced by Karmakar et al. that measures 
the temporal variation in the distribution of points in the 
Poincare plot [16].  

3.4. Geometric Poincare Features 

GOM and COM are defined by Moharreri et al., 
considering the points' location in relation to the line of 
identity [17]. Based on this definition, the points have three 
different positions in the Poincare plot: up, on, or down the 
line of identity [17]. Furthermore, they consider the 
location of two consecutive points in the Poincare plot to 
identify the dynamic behavior of points in this phase space 
[17].  

3.5. Heart Rate Asymmetry (HRA) 

HRA is defined based on the distribution of points 
above and below the identity line [18]. In HRA, the points 
above the line of identity are called deceleration, and the 
points below the line of identity are acceleration. PI is an 
index that shows the acceleration of the heart rate in 
relation to the points' distribution in the Poincare plot [19]. 
GI is the ratio of the distance of the points above the line 
of identity to the total distance of all points in Poincare 
space [20]. The SI index focused on the phase-angle 
difference between points above the line of identity [21]. 

3.6. Heart Rate Fragmentation (HRF) 

HRF refers to irregularities and disruptions in heart rate 
patterns [22]. The Percentage of Inflection Points (PIP) is 
calculated as the combined percentage of transitions from 
HR acceleration to HR deceleration, or vice versa, and 
from HR acceleration/deceleration to stability (no change), 
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Table 1. The Number of Available ECG Signals in Each 
Test 

Tests Number of Signals 
Veloergometry 73 

Six-Minute Walk 67 
Stair Climbing 72 

Timed Up and Go 75 
Treadmill Gait Analysis 66 
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or vice versa [23]. The inverse of the average length of the 
acceleration/deceleration segments (IALS) is calculated by 
the inverse of the average number of ∆𝑅𝑅 intervals in 
acceleration/deceleration segments, which are the 
sequence of RR intervals between consecutive inflection 
points for which the difference between two RR intervals 
is <0 and >0, respectively. The length of a segment is the 
number of RR intervals in that segment [22, 23]. The 
percentage of long segments (the number of ∆𝑅𝑅 intervals 
in acceleration/deceleration segments with ≥3 ∆𝑅𝑅 
intervals over the total number of ∆𝑅𝑅 intervals) is 
calculated, and its complement is the Percentage of Short 
Segments (PSS) [23]. The last feature in this field is the 
Percentage of RR Intervals in Alternation Segments 
(PAS). An alternation segment is a sequence of at least four 
RR intervals, for which heart rate acceleration changes 
sign every beat [22].  

4. Model Development and Evaluation 

To assess frailty, multiple classification models, 
including a decision tree and a neural network, were 
trained. Model performance was evaluated using a 5-fold 
cross-validation strategy, and the most effective classifier 
was selected based on cross-validated accuracy. 
 
5. Results 

Using EFS, 29 and 38 subjects were non-frail and frail, 
respectively.  CatBoost was the most effective classifier in 
detecting Frailty, with an F1 score of 0.846 and an 
accuracy of 0.82. Additionally, this classifier achieved a 
precision and recall of 0.825 and 0.868, respectively. The 
confusion matrix, ROC curve, and precision-recall curve 
are shown in Figures 1, 2, and 3, respectively. 

LF power, RR_mean, IALS, RR_mode, LF/HF ratio, 
PSS, and RR_skew were the top features identified using 
permutation-based importance that contributed to Frailty 
assessment. 

 

 
Figure 1. CatBoost confusion matrix for Frailty assessment 

 
Figure 2. CatBoost ROC curve (class 0 and 1 are non-frail 
and frail, respectively). Area under the ROC curve for both 
non-frail and frail was 0.82.  

 

 
Figure 3. CatBoost precision-recall curve (class 0 and 1 are 
non-frail and frail, respectively). Area under the precision-
recall curve for non-frail and frail was 0.718 and 0.86, 
respectively. 

 
LF power and LF/HF ratio were selected as important 

features in the Catboost classifier, consistent with prior 
research reporting their importance for capturing 
impairment in cardiac ANS [24, 25]. Studies consistently 
show that heart rate fragmentation increases with age in 
both healthy subjects and individuals with coronary artery 
disease [26]. To the best of our knowledge, this is the first 
study to utilize heart rate fragmentation for frailty 
assessment, and our results indicate that HRF features 
(PSS and IALS) were important in frailty assessment. 

In this study, pre-frail and frail individuals were 
grouped under a single 'frail' category due to the limited 
sample size. This limitation highlights the need to evaluate 
the proposed methodology on larger datasets that 
encompass all three frailty categories: non-frail, pre-frail, 
and frail. Furthermore, as the algorithm was developed 
using data from a single-center cohort, external validation 
on independent datasets is essential to assess the 
generalizability and robustness of the proposed frailty 
assessment approach. 
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