Frailty Assessment using HRV During Physical Activity
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Abstract

Studies have shown a strong link between heart rate
variability (HRV) and frailty. In this paper, frailty is
assessed using HRV during physical activity. This study
used a single-lead ECG collected from patients after open-
heart surgery during multiple physical activities. Frailty
was assessed using the Edmonton Frail Scale (EF'S), where
scores equal to or lower than five were considered non-
frail, and scores greater than five were considered frail.
ORS peaks during a 6-minute walk test were detected using
the Pan-Tompkins algorithm, followed by the extraction of
36 HRYV features. Extracted features include statistical
features (e.g., SDNN, pNN50), frequency features (e.g.,
low and high-frequency power), traditional Poincare
features (e.g., SD1 and SD2), geometric Poincare features
(e.g., local and global cooccurrence features), and heart
rate asymmetry (e.g., Guzik and Porta index). Multiple
classifiers were trained for frailty assessment, including a
decision tree and a neural network, and the best model was
selected via 5-fold cross-validation. ECGs for sixty-seven
participants (29 non-frail and 38 frail) were analyzed. A
CatBoost Classifier was the best-performing classifier,
leading to an F1 score of 84.6% and an AUC of 0.82.
Promising results suggest the potential of using HRV
during physical activity and machine learning for frailty
assessment.

1. Introduction

Frailty is a geriatric syndrome characterized by reduced
physiological reserves and heightened vulnerability to
stressors [1]. Among older adult patients undergoing major
cardiac surgery, frailty is associated with delayed
postoperative recovery and an elevated risk of adverse
outcomes [2].

Frailty is consistently linked with dysregulation of the
autonomic nervous system (ANS) and impaired cardiac
autonomic control [3]. This impairment is frequently
observed through reduced heart rate variability (HRV) in
individuals with higher levels of frailty [3-7]. Recent
research suggests that frailty can be more accurately
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assessed by analyzing cardiovascular responses to physical
activity, such as the upper-extremity function test [5, 8, 9].
Studies show that frail older adults often exhibit attenuated
heart rate (HR) increases and slower peak HR responses
during physical activity or orthostatic challenges,
indicating a diminished capacity to physiologically adapt
to stress [3, 8]. While resting HRV is a common measure
of ANS function, studies suggest that HRV responses to
controlled stressors, such as walking or upper-extremity
tasks, may more effectively reveal subtle or undetectable
dysregulations related to frailty at rest [3-5, 8]. A wearable
ECG recording device provides an easy, practical solution
for real-time cardiac signal recording and facilitates the
quantification of autonomic responses during exercise. The
PhysioNet dataset ‘“Wearable-based signals during
physical exercises from patients with frailty after open-
heart surgery” offers a valuable resource for research in
this domain [10]. The main goal of this paper is to evaluate
whether frailty can be accurately assessed using HRV
features combined with machine learning.

2. Data

This study used a PhysioNet database entitled
“Wearable-based signals during physical exercises from
patients with frailty after open-heart surgery” [10, 11].
This data includes synchronized single-lead ECG and
triaxial acceleration signals from 80 older adults enrolled
in a cardiac rehabilitation program after open-heart
surgery, recorded during a sequence of standardized tests
for health status assessment (veloergometry, six-minute
walk, stair climbing, timed up and go, and treadmill gait
analysis). A single-lead ECG recording was acquired using
a Polar H10 wearable chest strap sensor with a sampling
rate of 130 Hz [10, 11]. Frailty for each subject was
assessed using the Edmonton Frail Scale (EFS), in which
scores of 5 or lower were considered non-frail and scores
of 6 or higher were considered frail. The number of
available signals in each exercise in this study is
summarized in Table 1. Only the six-minute walk test
(6MWT) was used in this study for Frailty assessment.
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3. Feature Extraction

QRS peaks were detected from the ECG signal during
6MWT using the Pan-Tompkins algorithm [12], followed
by the extraction of 36 HRV features. Extracted features
are grouped into six categories: statistical features,
frequency features, traditional Poincare features,
geometric Poincare features, heart rate asymmetry, and
heart rate fragmentation.

Table 1. The Number of Available ECG Signals in Each
Test

Veloergometry 73
Six-Minute Walk 67
Stair Climbing 72
Timed Up and Go 75
Treadmill Gait Analysis 66

3.1. Statistical Features

With a finite number of intervals, consider RR intervals
as RR; withi = 1, 2, ..., N, where RR; denotes the value of
the i’th RR interval and N is the total number of successive
intervals. The mean value of RR intervals (RR_mean) is
the most evident of linear indexes of HRV [6]. Counting
how many times each RR interval appears, RR_mode is the
one that appears the most. RR_median is the middle value
in a set of RR intervals. RR _skew is a measure of the
asymmetry of the probability distribution of RR intervals
about its mean, and RR_kurt refers to the distribution of
data around the mean.

The standard deviation of RR intervals (SDRR) reflects the
overall (both short-term and long-term) variation within
the RR interval series, which is defined as:

SDRR =\/ﬁi(m§_ _ﬁ)z (1)

— L=l

in which the mean RR interval is shown by g = E{ RR }

. The standard deviation of successive RR interval
differences (SDSD) can be used as a measure of the short-
term variability.

SDSD = \/E{ARRf} ~E{ARR)} ©)
Another feature which is calculated from successive RR

interval differences is the NN50, which is the number of
successive intervals differing more than 50 ms:

PNN50 = ];[VN 30 100% 3)
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3.2. Frequency Features

Very Low Frequency (VLF) power is a band of the

power spectrum that ranges between 0.003 and 0.04 Hz,
indicating overall activity of various slow mechanisms of
sympathetic function. Low Frequency (LF) power is a
band of the power spectrum that ranges from 0.04 to 0.15
Hz and measures both sympathetic and parasympathetic
activity. High Frequency (HF) power, ranging from 0.15 to
0.4 Hz, reflects parasympathetic activity, and the LF/HF
ratio indicates the overall balance between the sympathetic
and parasympathetic systems [13].

3.3. Traditional Poincare Features

Poincare plot is a 2D space in which the pair of points
is defined as: (RR;, RRi+1), in whichi = 1, 2, 3, ..., N-1,
where N is the number of RR intervals in the signal [14].
SDI and SD2 are the standard descriptors of the Poincare
plot that show the dispersion of points around the lines y =
-x and y = x, respectively [15]. Tulppo et al. fitted an
ellipse to the distribution of points in the Poincare plot [15]
where Cr is the area of this estimated ellipse [16]. CCM is
a descriptor introduced by Karmakar et al. that measures
the temporal variation in the distribution of points in the
Poincare plot [16].

3.4. Geometric Poincare Features

GOM and COM are defined by Moharreri et al.,
considering the points' location in relation to the line of
identity [17]. Based on this definition, the points have three
different positions in the Poincare plot: up, on, or down the
line of identity [17]. Furthermore, they consider the
location of two consecutive points in the Poincare plot to
identify the dynamic behavior of points in this phase space
[17].

3.5. Heart Rate Asymmetry (HRA)

HRA is defined based on the distribution of points
above and below the identity line [18]. In HRA, the points
above the line of identity are called deceleration, and the
points below the line of identity are acceleration. P/ is an
index that shows the acceleration of the heart rate in
relation to the points' distribution in the Poincare plot [19].
Gl is the ratio of the distance of the points above the line
of identity to the total distance of all points in Poincare
space [20]. The S/ index focused on the phase-angle
difference between points above the line of identity [21].

3.6. Heart Rate Fragmentation (HRF)

HREF refers to irregularities and disruptions in heart rate
patterns [22]. The Percentage of Inflection Points (PIP) is
calculated as the combined percentage of transitions from
HR acceleration to HR deceleration, or vice versa, and
from HR acceleration/deceleration to stability (no change),
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or vice versa [23]. The inverse of the average length of the
acceleration/deceleration segments (IALS) is calculated by
the inverse of the average number of ARR intervals in
acceleration/deceleration  segments, which are the
sequence of RR intervals between consecutive inflection
points for which the difference between two RR intervals
is <0 and >0, respectively. The length of a segment is the
number of RR intervals in that segment [22, 23]. The
percentage of long segments (the number of ARR intervals
in acceleration/deceleration segments with >3 ARR
intervals over the total number of ARR intervals) is
calculated, and its complement is the Percentage of Short
Segments (PSS) [23]. The last feature in this field is the
Percentage of RR Intervals in Alternation Segments
(PAS). An alternation segment is a sequence of at least four
RR intervals, for which heart rate acceleration changes
sign every beat [22].

4. Model Development and Evaluation

To assess frailty, multiple classification models,
including a decision tree and a neural network, were
trained. Model performance was evaluated using a 5-fold
cross-validation strategy, and the most effective classifier
was selected based on cross-validated accuracy.

5. Results

Using EFS, 29 and 38 subjects were non-frail and frail,
respectively. CatBoost was the most effective classifier in
detecting Frailty, with an F1 score of 0.846 and an
accuracy of 0.82. Additionally, this classifier achieved a
precision and recall of 0.825 and 0.868, respectively. The
confusion matrix, ROC curve, and precision-recall curve
are shown in Figures 1, 2, and 3, respectively.

LF power, RR mean, IALS, RR _mode, LF/HF ratio,
PSS, and RR_skew were the top features identified using
permutation-based importance that contributed to Frailty
assessment.

Predicted
Non-frail Frail SUM
True

22 7 29
Non-frail 32.84% 10.45% 75.86%
24.14%

5 33 38
Frail 7.46% 49.25% 86.84%
13.16%
27 40 55/ 67
Sum 81.48% 82.50% 82.09%
18.52% 17.50% 17.91%

Figure 1. CatBoost confusion matrix for Frailty assessment
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Figure 2. CatBoost ROC curve (class 0 and 1 are non-frail
and frail, respectively). Area under the ROC curve for both
non-frail and frail was 0.82.
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00 02 04 06 o8 10

Figure 3. CatBoost precision-recall curve (class 0 and 1 are
non-frail and frail, respectively). Area under the precision-
recall curve for non-frail and frail was 0.718 and 0.86,
respectively.

LF power and LF/HF ratio were selected as important
features in the Catboost classifier, consistent with prior
research reporting their importance for capturing
impairment in cardiac ANS [24, 25]. Studies consistently
show that heart rate fragmentation increases with age in
both healthy subjects and individuals with coronary artery
disease [26]. To the best of our knowledge, this is the first
study to utilize heart rate fragmentation for frailty
assessment, and our results indicate that HRF features
(PSS and IALS) were important in frailty assessment.

In this study, pre-frail and frail individuals were
grouped under a single 'frail' category due to the limited
sample size. This limitation highlights the need to evaluate
the proposed methodology on larger datasets that
encompass all three frailty categories: non-frail, pre-frail,
and frail. Furthermore, as the algorithm was developed
using data from a single-center cohort, external validation
on independent datasets is essential to assess the
generalizability and robustness of the proposed frailty
assessment approach.
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